skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dumas, Anna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Differential equation compartmental models are crucial tools for forecasting and analyzing disease trajectories. Among these models, those dealing with only susceptible and infectious individuals are particularly useful as they offer closed-form expressions for solutions, namely the logistic equation. However, the logistic equation has limited ability to describe disease trajectories since its solutions must converge monotonically to either the disease-free or endemic equilibrium, depending on the parameters. Unfortunately, many diseases exhibit periodic cycles, and thus, do not converge to equilibria. To address this limitation, we developed a generalized susceptible-infectious-susceptible compartmental model capable of accurately incorporating the duration of infection distribution and describing both periodic and non-periodic disease trajectories. We characterized how our model’s parameters influence its behavior and applied the model to predict gonorrhea incidence in the US, using Akaike Information Criteria to inform on its merit relative to the traditional SIS model. The significance of our work lies in providing a novel susceptible-infected-susceptible model whose solutions can have closed-form expressions that may be periodic or non-periodic depending on the parameterization. Our work thus provides disease modelers with a straightforward way to investigate the potential periodic behavior of many diseases and thereby may aid ongoing efforts to prevent recurrent outbreaks. 
    more » « less